A New Ultra-cold Neutron Source Available at Los Alamos

Alexander Saunders
Los Alamos National Laboratory

The LANSCE UCN Source and its Test port
Measurements of density and velocity
Experiments using the Test port
The neutron lifetime experiment at LANL

1Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
2Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA
3Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
4Department of Physics, Duke University, Durham, North Carolina 27708, USA
5W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA
6Institut Laue-Langevin, 38042 Grenoble Cedex 9, France
7Physics Department, University of Washington, Seattle, Washington 98195, USA
8Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
9Research Reactor Institute, Kyoto University, Kumatori, Osaka, 590-0401, Japan
10Physics Department, Princeton University, Princeton, New Jersey 08544, USA
11Tohoku University, Sendai 980-8578, Japan
12Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
13Department of Physics, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
14Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
15Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
16Department of Physics, Idaho State University, Pocatello, Idaho 83209, USA
The future: a UCN User Facility at LANSCE

- UCN Sources in US
 - Around 1995, only source in world of extracted UCN for experiments – Steyerl rotor at ILL
 - 1995, superthermal LHe source development began at NIST for dedicated lifetime experiment
 - no extracted UCN capability
 - 1998, prototype SD2 source development began at LANL
 - 2004, first tests of production SD2 source at LANL
 - 2005, SD2 source development began at PULSTAR: much smaller than LANL source; first tests expected in 2010
 - 2007, superthermal LHe source development began at SNS for dedicated EDM experiment
 - no extracted UCN capability
- And of course PSI and TRIUMF sources are under construction in 2009

2009, LANL source is the only, operational source for extracted UCN in the US
World’s UCN Projects

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Ec (neV)</th>
<th>ρ_{UCN} (UCN/cm³)</th>
<th>Status</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANL</td>
<td>Spallation/D2</td>
<td>180</td>
<td>35</td>
<td>Operating</td>
<td>UCNA/ Users</td>
</tr>
<tr>
<td>ILL</td>
<td>Reactor/turbine</td>
<td>250</td>
<td>40</td>
<td>Operating</td>
<td>Users</td>
</tr>
<tr>
<td>Pulstar</td>
<td>Reactor/D2</td>
<td>335</td>
<td>120</td>
<td>Construction</td>
<td>Users</td>
</tr>
<tr>
<td>PSI</td>
<td>Spallation/D2</td>
<td>250</td>
<td>1,000</td>
<td>Commiss’ing</td>
<td>n-EDM+</td>
</tr>
<tr>
<td>TRIUMF</td>
<td>Spallation/HE-II</td>
<td>210</td>
<td>10,000</td>
<td>Planning</td>
<td>n-EDM+</td>
</tr>
<tr>
<td>Munich</td>
<td>Reactor/D2</td>
<td>250</td>
<td>10,000</td>
<td>R&D</td>
<td>Lifetime, EDM</td>
</tr>
<tr>
<td>Mainz</td>
<td>Reactor/D2</td>
<td>180</td>
<td>4</td>
<td>Testing</td>
<td>Users?</td>
</tr>
<tr>
<td>SNS</td>
<td>n beam/HE-II</td>
<td>130</td>
<td>400</td>
<td>R&D</td>
<td>n-EDM</td>
</tr>
</tbody>
</table>

Martin
LANSCE Experimental Areas

- **Lujan Center**
 - National security research
 - Materials, bio-science, and nuclear physics
 - National user facility

- **WNR**
 - National security research
 - Nuclear Physics
 - Neutron Irradiation

- **Isotope Production Facility**
 - Medical radioisotopes

- **800 MeV Proton LINAC**
 - Up to 1 MW

- **UCN Hall**
LANSCE Area-B UCN Source

- 800 MeV proton beam hits a tungsten target.
 - ~25 uC in 0.2 s every 5 s: 5 uA average or 4 kW proton power
- Spallation neutrons interact with various parts of the source.
- >2 MeV neutrons undergo n-2n reactions in Be.
- Neutron thermalize in Graphite, Be, poly and solid deuterium.
- Cold neutrons scatter in the solid deuterium to ultra-cold state.
- UCN valve to increase source lifetime
- Warm poly added in 2007, yellow
Current Capabilities of LANSCE UCN Source

- Huge floor space, ample cryogenic cooling (dedicated He liquefier in room)
- ~30 UCN/cc at shield wall
- Test port available
- ~1 UCN/cc in UCNA spectrometer @ 99.8% polarization
- Negligible artificial backgrounds

β-decay rates:
- 2006: less than 2 Hz
- 2007: 6.5 Hz
- 2008: 20 Hz
Layout of Test Port Area

- Test Port
- Switcher
- Pre-Polarizer Magnet
- Gate Valve
- Zr Window
- Monitor Det.
- Shield Wall
- UCN from source (7 m of steel guides)
- To Polarizer and UCNA
User Experiment location in LANSCE Area B
Layout For Source Tests

- Helium-3 Wire Chamber UCN Detectors (Al window)
- Gate valve closed allows measurement of lifetime in source volume
- Gate valve open allows measurement of UCN flux
Adjust source model to reproduce measured parameters

Data Flapper running

\[\tau_{source} = 30 \pm 1 \text{ sec} \]

- UCN flux per time at gate valve
- CN flux monitors
 - Argon activation
 - 3He monitor
- Proton monitors: toroid, “graphite” monitor

Monte Carlo

\[\tau_{source} = 30 \text{ sec} \]

Loss/bounce=4e-4
Layout for Magnetic Field Scans

- Vary solenoid magnetic field from 0 T to 6 T
- Change in UCN flux allows extraction of UCN velocity spectrum
Normalize the MC to the data and predict the flapper closed density

UCN Detected as function of Magnetic Field strength

\[\rho_{\text{UCN}} = 35 \pm 7 \ \text{UCN/cm}^3 \]

At the exit from the shielding package
UCN velocity spectrum is in fair agreement with a stainless steel guide potential.

A. T. Holley, NCSU

Using a magnetic field and Monte Carlo to determine the UCN speed distribution. The UCN velocity is axially analyzed by the magnet.
The Bottom Line

- Source and Test Port are available and running now
- Parameters:
 - LANSCE runs 6 months/year
 - Proton beam is shared with PRAD
 - available ~100 hrs/wk while accelerator is on
 - UCN source is shared with UCNA
 - Test port beam can be on 10 minutes per hour while UCNA runs
 - ~15 UCN/cc at Test Port (after PPM), 30 at shield wall, up to 180 neV (at 4 kW incident proton power)
 - UCNs at Test Port are polarized to be high-field seekers
 - Backgrounds outside of beam gate are largely natural
 - Beam gate is 0.2 s per 5 s
- Allocation by UCNA Executive Committee for now
 - But we hope for a PAC process soon
Future Improvements???

- Improved proton beam tune
 - $x \sim 2$
 - Requires 0.2 M$ for new beam pipe and diagnostics
- Larger tungsten spallation target
 - $x \sim 2$
 - Requires 0.3 M$ for design and construction
 - Must be replaced regardless
- Beam pattern: spread out pulses
 - $x \sim 2$
 - Requires 0.5 M$ for safety equipment
- Lower loss, higher V guides
 - $x \sim 3$
 - Requires 0.3 M$ and six months to replace guides
- Duty factor: kick beam to pRad
 - $x \sim 2$
 - Requires 3 M$ for kicker and shield wall
He4 Gas Cooled Tungsten Target

Graphite

800 MeV Protons
5 uA

12 cm
(~400 MeV)

Aluminum Tray
Future Improvements???

- Improved proton beam tune
 - $x \sim 2$
 - Requires 0.2 M$ for new beam pipe and diagnostics
- Larger tungsten spallation target
 - $x \sim 2$
 - Requires 0.3 M$ for design and construction
 - Must be replaced regardless
- Beam pattern: spread out pulses
 - $x \sim 2$
 - Requires 0.5 M$ for safety equipment
- Lower loss, higher V guides
 - $x \sim 3$
 - Requires 0.3 M$ and six months to replace guides
- Duty factor: kick beam to pRad
 - $x \sim 2$
 - Requires 3 M$ for kicker and shield wall
Possible Experiments for Test Port (and UCNA Spectrometer)

- Neutron EDM experiment engineering and optimization (nEDM collaboration)
- UCN transport development
- Neutron beta decay measurements
 - Neutron lifetime (Bowman)
 - Beta decay correlations (UCNb, abBA, UCNB)(Plaster)
 - D coefficient and time reversal (Mumm)
- Short ranged forces and quantum gravity (Baessler)
- Neutron interactions with surfaces and solids (Korobkina)
- NNbar development (Kamyshkov)
- UCN source technology development (Liu)
Neutron Electric Dipole Moment (n-EDM, d_n)

$$d_n \rightarrow \mathcal{I} \rightarrow \mathcal{CP}$$

New sources of CP violation are required to explain the baryon asymmetry of the universe.

Experimental technique:
- put UCN in a bottle with E, B-fields
- search for a change in spin precession frequency upon E reversal.

$$h \nu = 2 \mu_n B \pm 2d_e E$$
Past and Future n-EDM efforts

- Sussex-RAL-ILL expt. \(d_n < 3 \times 10^{-26} \text{ e-cm}\)
 - 0.7 UCN/cc, room temp, in vacuo
- CryoEDM (Sussex-RAL-ILL)
 - 1000 UCN/cc, in superfluid 4He
- SNS
 - 430 UCN/cc, in superfluid 4He
- PSI
 - 1000 UCN/cc, in vacuo
- TRIUMF: \(1-5 \times 10^4\) UCN/cc

Sussex-RAL-ILL experiment
nEDM Storage Time at LANSCE Area B

\[
\frac{1}{\tau} = \frac{1}{\tau_n} + \frac{1}{\tau_w} + \frac{1}{\tau_{\text{hole}}} + \frac{1}{\tau_3} + \frac{1}{\tau_{\text{up}}}
\]

Storage cell

Vacuum enclosure

New nEDM Storage apparatus

Switcher

Pre-polarizer

UCN Detectors

UCN from SD$_2$ Source

M. Cooper

Goal: 20 K

Previous data

Storage Time vs Temperature

Storage Time (s)

Temperature (K)

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350

0 50 100 150 200 250 300 350

100K 300K

400S

M. Cooper
Surface UCN Depolarization in a Magnetic field

The depolarization is measured again with the test guide placed between the baseline guide and the shutter.

Components:
- Shutter (with 3/16” monitoring aperture)
- Guides Tested
 - Stainless Steel
 - DLC Copper Guide
 - Electro-Polished Cu Guide
 - Mechanically-Polished Cu Guide

Raymond Rios et al.
Depolarization Results

We see an increase depolarization of neutrons with lower magnetic holding fields using diamond-like coated and mechanically polished Copper guides.
• The error on lifetimes measured with UCN are lower.
• The red value is in dispute and not included in the PDG average.
• LANL and others will make a difference.
Overview of Magnetic Trap Neutron Lifetime Experiment

- Asymmetric compound toroidal trap
- UCN trapped by gravity in open-top bowl ("the bathtub")
- Permanent magnets repel UCN on bottom
- Minimize material interactions
Cleaning marginally trapped UCN

- Trap must minimize **quasi-bound orbits** (and *quickly*)!\[\tau_{\text{clean}} \ll \tau_n\]
- **Asymmetry** helps fills trap phase space.
- Halbach array and coils introduces **spatial ripples** in the magnetic field to further destroy quasi-bound orbits.
- See Bowman’s talk for more details
Sensitivity

- Effective trap volume is 0.6 m3
- UCN may trap up to E = 48 neV
- LANSCE source can produce >10 UCN cm$^{-3}$ at gate valve
- Trap density >1 UCN/cc: 600,000 UCN per fill
- We hope for a sensitivity of 0.1 s
Construction progress
Summary

• The LANSCE UCN source is operating now and able to supply extracted UCNs
• The available UCN density is up to 30 UCN/cc (at the shield wall)
• Several experiments have already used the test port
• Our new lifetime experiment is next in the queue for 2010
• We hope there will be more to come!