UCNTau: Study of Lifetime Measurement in a Magneto-Gravitational Trap

A. Saunders

The goal: to provide an experimental testbed to study the systematics involved in reaching a 0.1 s measurement of the neutron lifetime, and use it to make a 1 s measurement as part of the process.

UCN τ Collaboration:

S. Clayton, G. Hogan, M. Makela, C. Morris, J. Ramsey, A. Saunders, P. Walstrom, J. Wang (Los Alamos Nat'l Lab)

D. Bowman, S. Penttila (Oak Ridge Nat'l Lab)

E. Adamek, C. Cude, W. Fox, C.-Y. Liu, G. Manus, D. Salvat, J. Vanderwerp, S.

Sawtelle, K. Solberg (Indiana U.) K. Hickerson (Caltech)

A. R. Young, B. Vorndick (NCSU)

Magneto-Gravitational Trap

Systematic Effects to be Studied with Prototype

- Phase space
 - Quasi-bound orbits
 - Phase space independent detection
- UCN spectral effects
 - Monitor accuracy
 - Cleaning efficiency per height
- Unexpected UCN losses
 - Spin flips: field zeroes, non-adiabiticity
 - Residual gas
 - Vibrations
 - Weak spots in Halbach array
- Detector effects
 - Efficiency
 - Position dependence
 - Gain effects, thresholds
 - Backgrounds: natural, proton-generated, UCN-generated

Asymmetric Trap \rightarrow Mixing Phase Space

• Low symmetry (together with field ripples) induces states mixing between circular orbits, through chaotic motion (or not).

• Leads to **quick cleaning** (~ seconds) of the quasi-bound UCN with large tangential velocities.

R&D: Monte-Carlo Simulations on Neutron Tracking

Questions:

- Phase Space evolution.
- Detection efficiency as a function of time
- Chaotic trajectory or not?

Tools under development:

- Import and/or recreate geometry in the without overlap, gaps, or other errors.
- Input finite-element-analysis results for enusits magnetic field.
- Collect trajectories for marginal paper and phase space analysis.
- Track spin.
- Investigate different cleaning techniques.
- Perform emptying and filling experiment.
- Perform β detection experiment.

600

200

400

Transport Simulation

GEANT4 in feed guides Home brew in trap

Does not yet track UCN spin

Tracks equations of motion modeled magnetic field

Example: rapid mixing of phase space

• 0 s

• 1 s

• 2 s

• 3 s

In-Trap Simulation

Horizontal cleaner eliminates marginal UCNs (in simulation!)

Cleaning Time

Remove cleaner here

A variety of measurement schemes to detect neutron β -decay

1. Detect decayed βs in real time.

- Decay betas are guided along the guiding fields into beta detectors mounted at the two ends.
- Require at least 0.1 T of holding fields.
- 2. Measure survival UCN by draining the UCN into a UCN detector mounted on the bottom of the trap.
 - The UCN draining efficiency depends on the storage time and the UCN spectrum evolution.
 - Susceptible to phase space evolution during long (~200 s) draining time.
- 3. Pump & Dump
 - Convert the lifetime trap into **an ionization chamber detector** on demand.
 - Avoids the time-dependent detection efficiency.
 - Use BF₃/Ar gas mixture.
- 4. Proton collection and amplification
- 5. Vanadium dagger

R&D: Vanadium solid state detector

 50 V+n $\rightarrow {}^{51}$ V (stable) 51 V+n $\rightarrow {}^{52}$ V $\rightarrow {}^{52}$ Cr+ β^{-} + γ (100%)

1. Insert vanadium foil to absorb neutrons 2. Extract foil into shielded counter 3. Perform β - γ coincidence measurement. β : 1.073 MeV, γ : 1.4 MeV

T^{1/2} = 3.743 m

Use several detectors to get position information on UCN distribution inside the trap.

V Measurement sequence

Demonstration of Vanadium activation and Counting of UCN

Vanadium Counting Setup

•Betas provide a clean signal with low background

•The background in the CsI detector is considerably higher •Detecting the γ and β in coincidence provides excellent background rejection

Relative UCN flux monitoring: preliminary measurements

UCN Facilities

- LANL source (available now, with best performance ever).
 - 80 UCN cm⁻³ at the gate valve[.]
 - Beam sharing with UCNA, B experiment.
 - 200 s fill, followed by a 1 hour measurement (6% duty).
 - Can run simultaneously with UCNA by filling while UCNA measures background.

- PSI source (commissioning).
- Pulstar source (commission this year?).
- TRIUMF source (funding secured this year, construction?)

UCN Source in Area B at LANSCE

Timeline

- Complete Halbach array and holding coils (2012)
- Offline monitoring tests (Q3/Q4 2012)
- Install low-field spin-flipper (2012)
- Comprehensive simulation (2012-)
- Preliminary storage measurement, systematics studies
 - cleaning/marginal trapping
 - demonstrate vanadium technique
 - source fluctuations/monitoring
- Use measurements to understand/control systematics, push towards next gen. experiment

Construction Progress

Summary

- UCN in a <u>Magneto-gravitational Trap</u>
 - No material interactions
 - Only conservative fields are present. Monte-Carlo simulations are reliable.
- Will initially use operating <u>UCN D₂ spallation source at LANSCE</u>
 - Compatible beam-sharing with UCNA, B experiments
- PPM and spin flipper can select spin state
- Large trap volume, > 1 UCN cm⁻³ in the experiment (> 10 UCN cm⁻³ in the source), <u>sufficient statistics for 1 s measurement; 0.1 s</u> <u>more challenging</u>.
- Room temperature experiment, study of <u>versatile detecting</u> <u>schemes</u> possible.
- Hopefully trapping neutrons this accelerator cycle! Comparison of systematic effects to Monte Carlo will commence immediately.

Backup slides

Probing Physics Beyond the Standard Model Through Neutron β -Decay

Neutron beta decay as a probe for physics beyond the standard model

33

The UCN source at LANSCE

Non-specularity=3%

Loss/bounce=3.5×10⁻⁴

Experiment Status

- The major item is the magnet array
 - Support frame is complete
 - About half of magnets are mounted
 - Forming a trap 15 cm deep
 - But magnet company is out of business
 - Rest of material is procured
- Vacuum systems procured
- Vacuum can tested
- UCN detectors ready (tube and box)
- Guides and switches
 - Materials in hand
 - UCNA switch/roundhouse still in design
 - UCN trap door procured
- Cleaner ready for testing
- Support Stand procured
- Still needed items:
 - Beta detectors (?), holding field coils
 - In situ neutron detectors
 - Return yoke (?)
 - Spin flipper
 - Clear space for experiment

International competition in UCN production

Courtesy: O. Zimmer

Source location	Source type	UCN density [cm ⁻³]	comment	when?
ILL Grenoble, PF2	LD_2 + turbine	50	still THE source	> 1985
Los Alamos, 2.4 kW _{av} proton	SD_2	120	in source	now
Mainz TRIGA upgraded	SD_2	20 ~200	in $V = 101$	now 2009
ILL Grenoble, H172 upgraded + magnetic trap	He-II (0.5 K)	> 1000 2000 polarised	in V = 6.4 1 up to 40 l	2009 > 2011
PSI, 12 kW _{av} proton	SD_2	> 1000	in $V = 20001$	2010
North Carolina, 1 MW reactor	SD_2	1300	in source	2011
Munich, 20 MW reactor	SD_2	~ 10000	in source	2011
PNPI, 16 MW reactor	He-II (1.2 K)	13000 7700	in 35 l exp. bottle in 350 l exp. bottle	2012
TRIUMF, 5 kW _{av} proton	He-II (0.8 K)	18000	at exp. port	proposal
				36

+ insitu He-II UCN sources at ILL (Cryo-EDM), NIST (n-lifetime), and SNS (EDM)

UCN Lifetime Experiment at NIST

- Liquid He Source
- Magnetically trapped in liquid Helium.
- Decayed β s counted.

A superconducting loffe trap

UCN production in He-II and in-situ detection (NIST)

UCN Lifetime Experiment at the ILL

- Neutrons from the ILL turbine.
- Trapped with permanent magnets and gravity.
- Surviving neutrons ٠ counted.

P. Geltenbort (V. Ezhov)

Universidat Autonoma, Madrid, 30 November 2007

V. Ezhov et al., J. Res. NIST 110 (2005) 345

Unpublished; in development

Responsibilities

- Construction underway
 - LANL: preliminary concept design, engineer design, vacuum chamber, Halbach PM array
 - IU: Holding field coils (100 gauss air-cooled EM), detector concept design, detailed simulations (GEANT4 neutron tracking, FEA field 3-D map, Garfield gaseous detector)

Halbach array

- Each magnet 90^o out of phase with its neighbor.
- The array has B field "ripples" of scale L/4 = 0.5 in
- Rotating field is orthogonal to holding field B₀

Linear Halbach Arrays

• Ideal linear Halbach array- continuous limit

- $|\mathbf{B}|$ approaches maximum of B_{rem} when *d* is large.
- Zero field on bottom.

Finite Halbach Arrays

- Approximate continuous array with finite-width blocks.
- Magnetization vector **M** is constant in magnitude and direction within a block, same magnitude $|\mathbf{M}| = B_{rem}$ in all blocks.

• Low field on bottom, high field on top

2nd-order array: 0, 45, and 90-deg. blocks

- Finite blocks and slightly non-linear behavior of PM material introduce higher Fourier components.
- Fundamental of 1st-order array is 0.9003 ($4/\pi\sqrt{2}$) times the continuousarray field. Next component is the *n*=5 component.
- Fundamental of 2nd-order array is 0.9745 times the continuous-array field. Next component is the *n*=7 component.

V_{ud} for unitarity test

model-independent external radiative correction, δ'_{R} = 1.466 ×10⁻²

$$ft(1 + \delta'_R) = \frac{K}{|V_{ud}|^2 G_F^2 (1 + 3\lambda^2)(1 + \Delta_R)}$$
f: Phase space factor=1.6886
(Fermi function, nuclear
mass, size, recoil)
From μ -decay: 8.6 ppm
$$|V_{ud}|^2 = \frac{4908.7 \pm 1.9s}{\tau_n (1 + 3\lambda^2)}$$

• To be comparable to the theoretical uncertainty: 4×10^{-4} , requires experimental uncertainty: $\Delta A/A = 4\Delta \lambda/\lambda < 2 \times 10^{-3}$ and $\Delta \tau/\tau = 10^{-3}$.

Ultracold Neutrons

• Nuclear force (max: 350neV)

• Magnetic force (60neV/T)

 Gravitational force (100 neV/m)

What we have now: 50% trap

- Reduced trap size ~ 82 liters
- But what is the number of UCN trapped?

v³dv distribution, due to absorption and